FINITE BIORTHOGONAL TRANSFORMS
AND
MULTIRESOLUTION ANALYSES ON INTERVALS

BACKGROUND

Suppose scaling coefficients {s;,}, {3} are given such that ¢ and ¢ are two compactly sup-
ported functions in L?(R) which satisfy the scaling equation

O(x) = V2Y 51020 — k), o(x) = V2) 502z — k),

that ¢ and gz~5 are biorthogonal
(¢(x). oz —n)) = don,
and that their integer shifts form Riesz bases for two subspaces of L*(R)
Vo = Linear Span of {¢(z — k) : k € Z},
Vo = Linear Span of {¢(x — k) : k € Z}.

Multiresolution analyses (MRAs) of L?*(R) are generated by imposing the conditions
f(x) € Vi <= f(22) € Visr, f(2) Vi <= f(20) € Vi,
(It is also assumed that |V, and |V, are dense in L(R).)

Let R R
Snp = 2202 — k), i = 2"29(2"x — k).
Define the projections from L? onto V,, and v, by
k k
Letting Q”N: w1 — P, and @n = Nn+1 — 15“, we define the spaces W,, and Wn as the range
of @, and @), respectively. These spaces satisfy
Vn@Wn: n+ls ‘7n®/wvn:‘7n+1~

These are not necessarily orthogonal sums, however the biorthogonality implies

W, LV, W,LlV,.



A fundamental result is that L*(R) = @ W,, = P W,,, and that there is an extremely simple
way to define these spaces W,, and W,,. There exist wavelet functions

U(r) = V2 wd(2e — k), D) = V2) @ (2 — k)

where
wp = (—1)*8n_p, 10 = (=1)*sy_; for fixed odd N
such that
W, = The linear span of {2"/%)(2"x — k) : k € Z},

W, = The linear span of {2V%)(2"x — k) - k € Z).

Furthermore, defining bi-infinite matrices S = (5%) = (sj_2), W™ = (W) = (wj—an),
5% = (SZ",?) = (5j-21), W = (W;¥) = (;_2), produces an invertible map 7" : I* — > x [?
via the discrete wavelet transform. The discrete wavelet transform applied to a signal f €

I2(R) is defined by
S 12
ri=(w) =)
and has exact reconstruction

@ @O

To apply this theory to a finite length f = {fy Zzg_l a natural approach would be to first

periodize the data. The resulting decompositions ¢ and h are then periodic. Considering one
period of ¢ and h is equivalent to applying certain finite matrices to the original finite signal

f. We denote these matrices S, W, S, and W. For instance,

So S1 S92 S3 S4 s5 0 0 0 O
0 0 Sop S1 S22 S3 S4 S5 0 0
S = 0 0 0 0 Sog S1 S22 S3 S4 Sjy
S4  Sp 0 0 0 0 So S1 S22 S3
So S3 S4 S5 0 0 0 0 So S1

This transformation will intertwine the data at the beginning and end of f, which is unde-
sirable. Theorem 1 addresses this.



CURRENT RESULTS

Given a finite number of scaling coefficients {s;}:"4! and {3, }7"5! producing biorthogonal

scaling functions ¢ and ¢, we let T = (I/k?/), T = S

finite “periodized” matrices just described.

, where S, W, §, and W are the

A pair of square matrices (M, ]Tf) are called biorthogonal if M*M = MM* = I.
<T, f) form a biorthogonal pair.

Theorem 1. Given the matrices T and TV, there exist biorthogonal pairs of matrices (U, (7)
and (V, \7) such that QQ = ﬁT‘~/, @ = UTV are biorthogonal and consist of banded block

matrices.

V and 1% ‘make use of the biorthogonality of the scaling coefficients and are defined so that
TV and TV are banded. U and U can be used to modify the entries in the upper-left and
lower-right sub-blocks of ) and Q.

Theorem 1 provides us with banded coefficient matrices, which can be used to define a

multiresolution analysis. Letting () = <M>, @ = (%), we have banded matrices

N
AO Al AQ 0 0 . A/O Avl AVQ 0 0
M=1[0 S 0], M=]0 Se 0
00 By By| B 0| 0 By Bi| By

where S, is a block matrix of interior rows of scaling coefficients {s;} that were unaltered
by the transform. Ag, A;, Ao, and By, By, By are n X n block matrices.

The rows of these modified matrices can be regarded as scaling coefficients
and used to construct a multiresolution analysis over a finite interval.



Define
Vo = The linear span of {gbj(x)}?igl

where
$a () j=0,...,n—1
oj(x) =2 Ple—j—n) j=n,...,np—n—1
OB jnpn(T) j=np—m,... np—1

with ‘70 defined similarly. The “interior” functions are simply integer shifts of ¢(z), the
original scaling function. The functions ¢4 ; and ¢p; are left and right boundary functions
defined via the first or last n rows of M, respectively. The collection is defined by the scaling
relation

1) Do(x) = (65(x)) = V2M®,(22), Do) = (d5(2)) = VM, (20),

where @ is a column vector (of length n;) whose j™ component is the function ¢;, and ®;
is a column vector (of length 2n;) which also contains the functions ¢;, but includes more
interior functions (more shifts of the scaling function ¢). For instance, in the case of n =1
we would have

04(7) = V2(a064(20) + 016(22) + 26(27 — 1))
These collections V; and Vj are well-defined and biorthogonal if |Ag|, |Aol, |B2|, |B2| < 1.
(Where |M| can be the max-norm of the entries from a matrix M, or the more typical
operator norm (spectral norm) corresponding to the 2-norm for vectors.)

Theorem 2. There exist unique solutions to (1), {¢;} and {qgj}, which are compactly sup-
ported and satisfy (¢;, o) = ;% provided that |Ao|, |Ao|, | Bal|, and |By| < 1.

We define Wy as the linear span of the components of Wy, and WO as the linear span of the
components of Wy where

Wo(e) = (95(2) = VEN®,(20),  To(a) = (5(2)) = VEND (20).

V1 is defined as the linear span of the components of ®;(2x), and similarly for 171 This pro-
duces multiresolution analyses over [0, 2n| consisting of finite-dimensional subspaces.

Theorem 3. Given biorthogonal scaling functions ¢(x) and é(a:) supported in a finite inter-
val [0, 2ny], we have Vo @ Wy = Vi and Vo @ Wy = Vi (as oblique sums) as well as Vo L W
and Vo L W,.

Now that we have defined the scaling and wavelet functions, their regularity and approxi-
mation properties can be explored. Let C'* denote functions which are Holder continuous of
order .

Theorem 4. If p € C* then ¢4 (x) is C* for x > 0.
If ¢ € C% and |Ao| < 2797Y2, then ¢ (x) is C* at 0.

Theorem 5. If |Ag| = \/LE and ¢ is Lipschitz, then ® 4 is bounded.



