Finite Biorthogonal Transforms and Multiresolution Analyses on Intervals

David Ferrone

The University of Connecticut

November 29, 2010

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Overview

- Background:
 - Scaling Functions
 - Multiresolution Analyses (MRA) and Wavelet Functions
 - The Discrete Wavelet Transform (DWT)
- Motivation: Finite Orthogonal Transforms and MRA on Intervals (Madych, 1997)
- Finite Biorthogonal Transforms and MRA on Intervals

Scaling Functions

Definition

A function $\phi : \mathbb{R} \to \mathbb{C}$ is called a *scaling function* (with *scaling coefficients* $\{s_k\}$) if it satisfies the *refinement equation*:

$$\phi(x) = \sum_k s_k \phi(2x - k)$$

Scaling Functions

Definition

A function $\phi : \mathbb{R} \to \mathbb{C}$ is called a *scaling function* (with *scaling coefficients* $\{s_k\}$) if it satisfies the *refinement equation*:

$$\phi(x) = \sum_k s_k \phi(2x - k)$$

Let

$$m(\xi) = \frac{1}{2} \sum_{k} s_k e^{-ik\xi}$$

then

$$\hat{\phi}(\xi) = m\left(\frac{\xi}{2}\right)\hat{\phi}\left(\frac{\xi}{2}\right)$$

i.e.

$$\hat{\phi}(\xi) = \prod_{k=1}^{\infty} m\left(\frac{\xi}{2^k}\right) \hat{\phi}(0)$$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

 Image: Image:

A scaling function could be interpreted as a fixed point of the operator

$$Tf = \sum_{k} s_k f(2x - k)$$

and if $\boldsymbol{\phi}$ is continuous, it can be defined iteratively by

$$\phi^{(n+1)}(x) = \sum_{k} s_k \phi^{(n)}(2x-k)$$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

▶ < ≣ ▶ ≣ ∽ Q (~ November 29, 2010 4 / 42

Examples of Scaling Functions

The characteristic (Haar) function on [0,1] with coefficients $\{s_0, s_1\} = \{1,1\}$

The hat function on [-1,1] with coefficients $\{s_{-1}, s_0, s_1\} = \{\frac{1}{2}, 1, \frac{1}{2}\}$

イロト 不得下 イヨト イヨト

Definition

 ϕ is called *orthogonal* if $\langle \phi(x-k), \phi(x-j) \rangle = \delta_{k,j}$

Definition

$$\phi$$
 is called *orthogonal* if $\langle \phi(x-k), \phi(x-j) \rangle = \delta_{k,j}$

If ϕ is an orthogonal scaling function, then

$$\sum_{k} s_k s_{k-2j} = 2\delta_{0,j}$$

Definition

$$\phi$$
 is called *orthogonal* if $\langle \phi(x-k), \phi(x-j) \rangle = \delta_{k,j}$

If ϕ is an orthogonal scaling function, then

$$\sum_k s_k s_{k-2j} = 2\delta_{0,j}$$

To see this, notice

$$\delta_{0,j} = \langle \phi(x), \phi(x-j) \rangle = \left\langle \sum_{k} s_k \phi(2x-k), \sum_{n} s_n \phi(2x-2j-n) \right\rangle$$
$$= \sum_{k,n} s_k s_n \langle \phi(2x-k), \phi(2x-(2j+n)) \rangle$$
$$= \frac{1}{2} \sum_{k,m} s_k s_{m-2j} \langle \phi(t-k), \phi(t-m) \rangle = \frac{1}{2} \sum_{k} s_k s_{k-2j}$$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

2

MRA

Definition

A *Multiresolution Analysis* (MRA) of $L^2(\mathbb{R})$ is an infinite nested sequence of subspaces of $L^2(\mathbb{R})$

 $\ldots \subset V_{-1} \subset V_0 \subset V_1 \subset \ldots$

with the properties

(i) U_n V_n is dense in L²(ℝ)
(ii) ∩_n V_n = {0}
(iii) f(x) ∈ V_n ⇔ f(2x) ∈ V_{n+1} for all n ∈ ℤ
(iv) f(x) ∈ V_n ⇔ f(x - 2⁻ⁿk) ∈ V_n for all n, k ∈ ℤ
(v) ∃φ such that {φ(x - k) : k ∈ ℤ} forms an orthonormal basis of V₀
{φ_{n,k} = 2^{n/2}φ(2ⁿx - k) : k ∈ ℤ} forms an orthonormal basis for V_n.

イロト 不得 とくまと くまとう き

For ϕ orthogonal, $P_n: L^2 \to V_n$ is given by

$$P_n(f) = \sum_k \langle f, \phi_{n,k} \rangle \phi_{n,k}$$

Functions in V_n are said to have resolution or scale 2^{-n} . $P_n f$ is an approximation to f at resolution 2^{-n} , and $P_n f \rightarrow f$ in L^2 .

The fine detail at resolution 2^{-n} is defined:

$$Q_n f(x) = P_{n+1} f(x) - P_n f(x)$$

The range of Q_n coincides with W_n , the orthogonal complement of V_n within V_{n+1} . We have

$$W_n \perp V_n$$
 and $V_n \oplus W_n = V_{n+1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Approximations of Sine

November 29, 2010 9 / 42

David Ferrone (UConn)

Biorthogonal MRA on Intervals

Wavelets

The spaces $\{W_n\}$ satisfy conditions similar to that of a MRA. For a MRA with orthogonal scaling function ϕ , the following can be demonstrated:

(i) ⊕_n W_n = L²
(ii) W_k⊥W_n if n ≠ k
(iii) f(x) ∈ W_n ⇔ f(2x) ∈ W_{n+1}
(iv) f(x) ∈ W_n ⇔ f(x - 2⁻ⁿk) ∈ W_n
(v) ∃ψ ∈ W₀ such that {ψ(x - k)}forms an orthonormal basis of W₀. (⇒ {ψ_{n,k} = 2^{n/2} ψ(2ⁿx - k) : k ∈ ℤ} forms a basis for W_n.)
(vi) ψ(x) = ∑_k w_kφ(2x - k) for some coefficients w_k. It can be shown that w_k = (-1)^k s_{N-k} for any odd N.

 ψ is called the wavelet function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Haar Scaling and Wavelet Functions

David Ferrone (UConn)

Biorthogonal MRA on Intervals

November 29, 2010 11 / 42

Daubechies Scaling and Wavelet Functions

Biorthogonal MRA on Intervals

November 29, 2010 12 / 42

Orthogonality Conditions

Just as

$$\sum_k s_k s_{k-2j} = 2\delta_{0,j}$$

we will have

$$\sum_{k} w_k w_{k-2j} = 2\delta_{0,j}$$

Since $W_n \perp V_n$, we have $\langle \psi(x), \phi(x-j) \rangle = 0$, which implies:

$$\sum_k s_k w_{k-2j} = 0 \quad \forall j \in \mathbb{Z}$$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

November 29, 2010 13 / 42

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

Discrete Wavelet Transform

Since

$$V_{n+1} = W_n \oplus V_n = W_n \oplus (W_{n-1} \oplus V_{n-1}) = \ldots = V_l \oplus \left(\bigoplus_{k=l}^n W_k \right),$$

$$\forall f \in V_n$$
 $f = P_n f = P_l f + \sum_{k=l}^{n-1} Q_k f.$

So a function in V_n can be expressed as the sum of its approximation at a lower resolution and all of the fine detail at intermediate resolutions.

= 900

Fine Detail of a Sine Wave

David Ferrone (UConn)

Biorthogonal MRA on Intervals

November 29, 2010 15 / 42

Let
$$\ell_{n,k} = \langle f, \phi_{n,k} \rangle$$
 and $h_{n,k} = \langle f, \psi_{n,k} \rangle$,

$$P_n f = \sum_k \ell_{n,k} \phi_{n,k} = \sum_k \ell_{n-1,k} \phi_{n-1,k} + \sum_k h_{n-1,k} \psi_{n-1,k}.$$

・ロト ・個ト ・ヨト ・ヨト 三日

Let
$$\ell_{n,k} = \langle f, \phi_{n,k} \rangle$$
 and $h_{n,k} = \langle f, \psi_{n,k} \rangle$,

$$P_n f = \sum_k \ell_{n,k} \phi_{n,k} = \sum_k \ell_{n-1,k} \phi_{n-1,k} + \sum_k h_{n-1,k} \psi_{n-1,k}.$$

$$\ell_{n-1,k} = \sum_{j} s_{j-2k} \ell_{n,j}$$

$$h_{n-1,k} = \sum_{j} w_{j-2k} \ell_{n,j}$$

David Ferrone (UConn)

. . .

.

. .

Biorthogonal MRA on Intervals

November 29, 2010 16 / 42

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

With matrix notation,

$$\begin{pmatrix} \vdots \\ \ell_{n-1,0} \\ \ell_{n-1,1} \\ \ell_{n-1,2} \\ \vdots \end{pmatrix} = \begin{pmatrix} \ddots & & & & \\ \dots & s_0 & s_1 & s_2 & s_3 & 0 & 0 & \dots \\ \dots & 0 & 0 & s_0 & s_1 & s_2 & s_3 & \dots \\ \dots & 0 & 0 & 0 & 0 & s_0 & s_1 & \dots \\ & & & \ddots & & & \end{pmatrix} \begin{pmatrix} \vdots \\ \ell_{n,0} \\ \ell_{n,1} \\ \ell_{n,2} \\ \vdots \end{pmatrix}$$

$$\begin{pmatrix} \ell_{n-1} \\ h_{n-1} \end{pmatrix} = \begin{pmatrix} S \\ W \end{pmatrix} (\ell_n)$$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

November 29, 2010 17 / 42

<ロ> <個> <ヨ> <ヨ> 三日

With matrix notation,

$$\begin{pmatrix} \vdots \\ \ell_{n-1,0} \\ \ell_{n-1,1} \\ \ell_{n-1,2} \\ \vdots \end{pmatrix} = \begin{pmatrix} \ddots & & & & \\ \cdots & s_0 & s_1 & s_2 & s_3 & 0 & 0 & \cdots \\ \cdots & 0 & 0 & s_0 & s_1 & s_2 & s_3 & \cdots \\ \cdots & 0 & 0 & 0 & 0 & s_0 & s_1 & \cdots \\ & & & \ddots & & & \end{pmatrix} \begin{pmatrix} \vdots \\ \ell_{n,0} \\ \ell_{n,1} \\ \ell_{n,2} \\ \vdots \end{pmatrix}$$

$$\begin{pmatrix} \ell_{n-1} \\ h_{n-1} \end{pmatrix} = \begin{pmatrix} S \\ W \end{pmatrix} (\ell_n)$$

$$\frac{1}{2} \begin{pmatrix} S \\ W \end{pmatrix}^* \begin{pmatrix} \ell_{n-1} \\ h_{n-1} \end{pmatrix} = (\ell_n)$$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

November 29, 2010 17 / 42

The Implied MRA from S

Suppose

$$V_0 = \{\phi_k(x) = \phi(x-k) : k \in \mathbb{Z}\}$$

and recall

$$\phi\left(\frac{x}{2}-k\right)=\sum_{j}s_{j}\phi(x-(j+2k))=\sum_{m}s_{m-2k}\phi(x-m)$$

The Implied MRA from S

Suppose

$$V_0 = \{\phi_k(x) = \phi(x-k) : k \in \mathbb{Z}\}$$

and recall

$$\phi\left(\frac{x}{2}-k\right)=\sum_{j}s_{j}\phi(x-(j+2k))=\sum_{m}s_{m-2k}\phi(x-m)$$

$$\begin{pmatrix} \vdots \\ \phi_0(\frac{x}{2}) \\ \phi_1(\frac{x}{2}) \\ \phi_2(\frac{x}{2}) \\ \vdots \end{pmatrix} = \begin{pmatrix} \ddots & & & & \\ \dots & s_0 & s_1 & s_2 & s_3 & 0 & 0 & \dots \\ \dots & 0 & 0 & s_0 & s_1 & s_2 & s_3 & \dots \\ \dots & 0 & 0 & 0 & 0 & s_0 & s_1 & \dots \\ & & & \ddots & & & \end{pmatrix} \begin{pmatrix} \vdots \\ \phi_0(x) \\ \phi_1(x) \\ \phi_2(x) \\ \vdots \end{pmatrix}$$

Define

$$V_{-1} = \left\{ \phi_k \left(\frac{x}{2} \right) = \phi \left(\frac{x}{2} - k \right) : k \in \mathbb{Z} \right\}$$

- 2

Dealing with Finite Data

Given a sequence $\{f_k\}_{k\in\mathbb{Z}}\in\ell^2$ there is an orthogonal decomposition in $\ell^2\oplus\ell^2$ defined by

$$\ell_k = \sum_j s_{j-2k} f_j$$
$$h_k = \sum_j w_{j-2k} f_j$$

One method of extending a signal of finite length is to *periodize* the data.

Assume $\{f_k\}$ is real for $k = 0, 1, ..., 2n_f - 1$. Define $F_j = f_k$ when $j = k + 2n_f m$ for some $m \in \mathbb{Z}$. Apply the previous algorithm to $\{F_i\}_{i \in \mathbb{Z}}$. It will produce periodic ℓ and h.

E Sac

Simple Periodic Example

4 scaling coefficients and 10 points of data.

1	ℓ_0)		$\int s_0$	s_1	<i>s</i> ₂	<i>s</i> ₃	0	0	0	0	0	0 \	$\left(f_{0} \right)$
	h_0		w ₀	W_1	<i>W</i> ₂	W3	0	0	0	0	0	0	f_1
	ℓ_1		0	0	<i>s</i> ₀	s_1	s ₂	s 3	0	0	0	0	f_2
	h_1		0	0	w ₀	W_1	<i>W</i> ₂	W3	0	0	0	0	<i>f</i> ₃
	ℓ_2		0	0	0	0	<i>s</i> ₀	s_1	<i>s</i> ₂	s 3	0	0	f_4
	h_2	=	0	0	0	0	w ₀	W_1	<i>W</i> ₂	W3	0	0	f_5
	ℓ_3		0	0	0	0	0	0	<i>s</i> ₀	s_1	<i>s</i> ₂	s 3	<i>f</i> ₆
	h_3		0	0	0	0	0	0	w ₀	W_1	<i>W</i> ₂	W3	f ₇
	ℓ_4		<i>s</i> ₂	s 3	0	0	0	0	0	0	<i>s</i> ₀	<i>s</i> ₁	f ₈
	h_4	/	(w ₂	W3	0	0	0	0	0	0	w ₀	w_1	\ f ₉ /

d = Tf

Biorthogonal MRA on Intervals

<ロ> (日) (日) (日) (日) (日)

MRA on Intervals

Under the assumption that there are $2n_f$ points of data in $\{f_j\}$, 2n + 2 nonzero scaling coefficients, and $n_f > 2n$, we have the following:

MRA on Intervals

Under the assumption that there are $2n_f$ points of data in $\{f_j\}$, 2n + 2 nonzero scaling coefficients, and $n_f > 2n$, we have the following:

Theorem (Madych, 1997)

There exist orthogonal U and V so that Q = UTV is a banded matrix satisfying $Q^*Q = 2I$.

Under simple conditions (e.g. if the magnitude of the first entry of $Q < \sqrt{2}$) there is a well defined biresolution analysis of $L^2([0, 2n_f])$ such that $V_{-1} \oplus W_{-1} = V_0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MRA on Intervals

Under the assumption that there are $2n_f$ points of data in $\{f_j\}$, 2n + 2 nonzero scaling coefficients, and $n_f > 2n$, we have the following:

Theorem (Madych, 1997)

There exist orthogonal U and V so that Q = UTV is a banded matrix satisfying $Q^*Q = 2I$.

Under simple conditions (e.g. if the magnitude of the first entry of $Q < \sqrt{2}$) there is a well defined biresolution analysis of $L^2([0, 2n_f])$ such that $V_{-1} \oplus W_{-1} = V_0$.

(Notice $\frac{1}{\sqrt{2}}Q$ is an orthogonal matrix.)

E SQA

Proof when n=1

Suppose that there are 4 nonzero scaling coefficients. Recall

$$\sum_{k} s_k s_{k-2j} = 2\delta_{0,j}$$

and define

$$r_0 = rac{1}{\sqrt{s_0^2 + s_1^2}}$$
 $r_1 = rac{1}{\sqrt{s_2^2 + s_3^2}}$

Then the matrix

$$V = \begin{pmatrix} r_0 s_0 & 0 & 0 & \dots & 0 & 0 & 0 & r_1 s_2 \\ r_0 s_1 & 0 & 0 & \dots & 0 & 0 & 0 & r_1 s_3 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 & 0 \\ & & & \ddots & & & \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 & 0 \end{pmatrix}$$

is orthogonal.

David Ferrone (UConn)

э

Now TV =

$$\begin{pmatrix} s_0 & s_1 & s_2 & s_3 & 0 & 0 & \dots & 0 \\ w_0 & w_1 & w_2 & w_3 & 0 & 0 & \dots & 0 \\ 0 & 0 & s_0 & s_1 & s_2 & s_3 & \dots & 0 \\ 0 & 0 & w_0 & w_1 & w_2 & w_3 & \dots & 0 \\ & & \ddots & \ddots & & & & \\ 0 & 0 & \dots & 0 & s_0 & s_1 & s_2 & s_3 \\ 0 & 0 & \dots & 0 & w_0 & w_1 & w_2 & w_3 \\ s_2 & s_3 & 0 & 0 & \dots & 0 & s_0 & s_1 \\ w_2 & w_3 & 0 & 0 & \dots & 0 & w_0 & w_1 \end{pmatrix} \begin{pmatrix} r_0 s_0 & 0 & 0 & \dots & 0 & 0 & 0 & r_1 s_2 \\ r_0 s_1 & 0 & 0 & \dots & 0 & 0 & 0 & 0 & r_1 s_3 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 & 0 & 0 \\ & & & \ddots & \ddots & & & \\ 0 & 0 & 0 & \dots & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\sum_{k} s_{k} w_{k-2j} = 0 \text{ and } \sum_{k} s_{k} s_{k-2j} = 2\delta_{0,j} \implies TV \text{ is banded}$$

Biorthogonal MRA on Intervals

■ ► ◀ ■ ► ■ ∽ ۹ (~ November 29, 2010 23 / 42

・ロト ・四ト ・ヨト ・ヨト

Choosing arbitrary orthogonal matrices U_x and U_y and defining

$$U = \begin{pmatrix} U_{x} & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & U_{y} \end{pmatrix}$$

will allow

Q = UTV

to be orthogonal (after multiplying by $\frac{1}{\sqrt{2}})$ while giving some control over the actual entries of Q.

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

Let

$$\begin{pmatrix} M \\ N \end{pmatrix} = U \begin{pmatrix} S \\ W \end{pmatrix} V$$

M is a simple modification of *S*, and its rows may define a MRA of $L^2([0, 2n_f])$.

・ロト ・回ト ・ヨト ・ヨト

Let

$$\begin{pmatrix} M \\ N \end{pmatrix} = U \begin{pmatrix} S \\ W \end{pmatrix} V$$

M is a *simple modification* of *S*, and its rows may define a MRA of $L^2([0, 2n_f])$.

lf

$$M = \begin{pmatrix} a_0 & a_1 & a_2 & 0 & 0 & \dots & 0 \\ 0 & s_0 & s_1 & s_2 & s_3 & \dots & 0 \\ 0 & 0 & 0 & s_0 & s_1 & \dots & 0 \\ & & \ddots & \ddots & & & \\ 0 & \dots & s_0 & s_1 & s_2 & s_3 & 0 \\ 0 & \dots & 0 & 0 & b_0 & b_1 & b_2 \end{pmatrix}$$

 $V_0 \subset L^2([0, 2n_f])$ consists of $\{\phi_A(x), \phi_j(x), \phi_B(x)\}$ with $j = 0, ..., 2n_f - 3$.

If V_0 consists of $\{\phi_A(x), \phi_j(x), \phi_B(x)\}$, define

$$V_{-1} = \left\{ \phi_A\left(\frac{x}{2}\right), \phi_j\left(\frac{x}{2}\right), \phi_B\left(\frac{x}{2} + n_f\right) \right\} \quad j = 0, \dots, n_f - 3$$

where

$$\phi_A\left(\frac{x}{2}\right) = a_0\phi_A(x) + a_1\phi(x) + a_2\phi(x-1)$$

$$\phi\left(\frac{x}{2}-j\right) = s_0\phi(x-2j) + s_1\phi(x-2j-1) + s_2\phi(x-2j-2) + s_3\phi(x-2j-3)$$

$$\phi_B\left(\frac{x}{2}+n_f\right) = b_0\phi(x-2n_f+4) + b_1\phi(x-2n_f+3) + b_2\phi_B(x)$$

It can be shown that this MRA is well-defined provided $|a_0| < \sqrt{2}$ and $|b_2| < \sqrt{2}$.

David Ferrone (UConn)

Biorthogonal MRA on Intervals

November 29, 2010 26 / 42

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

Why is this the definition of ϕ_B ?

$$\phi_B\left(\frac{x}{2}+n_f\right) = b_0\phi(x-2n_f+4) + b_1\phi(x-2n_f+3) + b_2\phi_B(x)$$

Consider that on a finite interval $[0, 2n_f]$ when you dilate a function which terminates at the right endpoint, the support is no longer in the interval. It makes more sense to interpret dilation *restricted to the interval*. Define V_{-1} then, as consisting of

$$V_{-1} = \left\{ \phi_A\left(\frac{x}{2}\right), \phi_j\left(\frac{x}{2}\right), \phi_B\left(\frac{x}{2} + n_f\right) \right\} \quad j = 0, \dots, n_f - 3$$

and note now that the definition of $\phi_B\left(\frac{x}{2} + n_f\right)$ has not changed, it is still $M(\phi_j)$ as required. This explains the odd shift in the definition.

It is easier to consider $\tilde{\phi}_B(x) = \phi_B(x + 2n_f)$. In this case we simply add $2n_f$ to the argument in the equation defining ϕ_B and observe that it is now equivalent to

$$\tilde{\phi}_B\left(\frac{x}{2}\right) = b_0\phi(x+4) + b_1\phi(x+3) + b_2\tilde{\phi}_B(x)$$

David Ferrone (UConn)

Example of MRA on $L^2([0, 10])$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

Biorthogonality

Definition

 ϕ is biorthogonal to $\tilde{\phi}$ if $\langle \phi(x-k), \tilde{\phi}(x-j) \rangle = \delta_{k,j}$

Biorthogonality

Definition

 ϕ is biorthogonal to $\tilde{\phi}$ if $\langle \phi(x-k), \tilde{\phi}(x-j) \rangle = \delta_{k,j}$

A necessary condition is that

$$\sum_{k} s_k \tilde{s}_{k-2j} = 2\delta_{0,j}$$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

The projections onto the spaces V_n and \widetilde{V}_n are given by

$$P_{n}f = \sum_{k} \langle f, \tilde{\phi}_{n,k} \rangle \phi_{n,k} \qquad \qquad \widetilde{P}_{n}f = \sum_{k} \langle f, \phi_{n,k} \rangle \widetilde{\phi}_{n,k}$$
$$V_{n} \oplus W_{n} = V_{n+1} \qquad \qquad \widetilde{V}_{n} \oplus \widetilde{W}_{n} = \widetilde{V}_{n+1}$$

however these sums are not orthogonal.

・ロト ・回ト ・ヨト ・ヨト

The projections onto the spaces V_n and \widetilde{V}_n are given by

$$P_{n}f = \sum_{k} \langle f, \tilde{\phi}_{n,k} \rangle \phi_{n,k} \qquad \qquad \widetilde{P}_{n}f = \sum_{k} \langle f, \phi_{n,k} \rangle \widetilde{\phi}_{n,k}$$
$$V_{n} \oplus W_{n} = V_{n+1} \qquad \qquad \widetilde{V}_{n} \oplus \widetilde{W}_{n} = \widetilde{V}_{n+1}$$

however these sums are not orthogonal.

The wavelet coefficients are also intertwined:

$$w_k = (-1)^k \tilde{s}_{N-k}, \quad \tilde{w}_k = (-1)^k s_{N-k} \quad \text{N odd}$$

The projections onto the spaces V_n and V_n are given by

$$P_{n}f = \sum_{k} \langle f, \tilde{\phi}_{n,k} \rangle \phi_{n,k} \qquad \qquad \widetilde{P}_{n}f = \sum_{k} \langle f, \phi_{n,k} \rangle \widetilde{\phi}_{n,k}$$
$$V_{n} \oplus W_{n} = V_{n+1} \qquad \qquad \widetilde{V}_{n} \oplus \widetilde{W}_{n} = \widetilde{V}_{n+1}$$

however these sums are not orthogonal.

The wavelet coefficients are also intertwined:

$$w_k = (-1)^k \tilde{s}_{N-k}, \quad \tilde{w}_k = (-1)^k s_{N-k} \quad \text{N odd}$$

The *biorthogonality conditions* are:

$$\sum_{k} s_k \tilde{s}_{k-2j} = 2\delta_{0,j}$$
$$\sum_{k} w_k \tilde{w}_{k-2j} = 2\delta_{0,j}$$
$$\sum_{k} s_k \tilde{w}_{k-2j} = \sum_{k} w_k \tilde{s}_{k-2j} = 0$$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

November 29, 2010 30 / 42

Biorthogonal Example

November 29, 2010 31 / 42

Biorthogonal Setup

$$\begin{split} \{s_{-1}, s_0, s_1\} &\to \{s_3, s_4, s_5\} \\ \{\tilde{\tilde{s}}_{-4}, \tilde{s}_{-3}, \tilde{s}_{-2}, \tilde{s}_{-1}, \tilde{s}_0, \tilde{s}_1, \tilde{s}_2, \tilde{s}_3, \tilde{s}_4\} \to \{\tilde{s}_0, \tilde{s}_1, \tilde{s}_2, \tilde{s}_3, \tilde{s}_4, \tilde{s}_5, \tilde{s}_6, \tilde{s}_7, \tilde{s}_8\} \\ \\ \{0, 0, 0, s_3, s_4, s_5, 0, 0, 0, 0\} \\ \{\tilde{s}_0, \tilde{s}_1, \tilde{s}_2, \tilde{s}_3, \tilde{s}_4, \tilde{s}_5, \tilde{s}_6, \tilde{s}_7, \tilde{s}_8, 0\} \end{split}$$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

T consists of rows of scaling and wavelet coefficients that look like

 $\begin{aligned} &\{0,0,0,s_3,s_4,s_5,0,0,0,0\}\\ &\{\tilde{s}_8,-\tilde{s}_7,\tilde{s}_6,-\tilde{s}_5,\tilde{s}_4,-\tilde{s}_3,\tilde{s}_2,-\tilde{s}_1,\tilde{s}_0,0\}\end{aligned}$

with \widetilde{T} defined similarly.

E 990

T consists of rows of scaling and wavelet coefficients that look like

 $\begin{aligned} & \{0, 0, 0, s_3, s_4, s_5, 0, 0, 0, 0\} \\ & \{\tilde{s}_8, -\tilde{s}_7, \tilde{s}_6, -\tilde{s}_5, \tilde{s}_4, -\tilde{s}_3, \tilde{s}_2, -\tilde{s}_1, \tilde{s}_0, 0\} \end{aligned}$

with \widetilde{T} defined similarly.

Because of the biorthogonality conditions, $\left(\frac{1}{\sqrt{2}}T, \frac{1}{\sqrt{2}}\widetilde{T}\right)$ are biorthogonal, i.e.

$$\frac{1}{2}T\widetilde{T}^* = I$$

= 900

 ${\mathcal T}$ consists of rows of scaling and wavelet coefficients that look like

 $\{0, 0, 0, s_3, s_4, s_5, 0, 0, 0, 0\}$

$$\{\tilde{s}_8,-\tilde{s}_7,\tilde{s}_6,-\tilde{s}_5,\tilde{s}_4,-\tilde{s}_3,\tilde{s}_2,-\tilde{s}_1,\tilde{s}_0,0\}$$

with \widetilde{T} defined similarly.

Because of the biorthogonality conditions, $\left(\frac{1}{\sqrt{2}}T, \frac{1}{\sqrt{2}}\widetilde{T}\right)$ are biorthogonal, i.e.

$$\frac{1}{2}T\widetilde{T}^* = I$$

In this case we require biorthogonal (U, \widetilde{U}) , (V, \widetilde{V}) so that $Q = \widetilde{U}T\widetilde{V}$, $\widetilde{Q} = U\widetilde{T}V$ are banded matrices satisfying

$$Q\widetilde{Q}^* = 2I$$

= 900

(<i>s</i> ₀	s_1	<i>s</i> ₂	s 3		s_{2n+1}	0		0	0)
	W ₀	W_1	<i>W</i> ₂	W ₃		W_{2n+1}	0		0	0
	0	0	<i>s</i> ₀	s_1	<i>s</i> ₂	s 3		s_{2n+1}	0	÷
	0	0	w ₀	w ₁	<i>W</i> ₂	W ₃		W_{2n+1}	0	÷
	÷	÷			·	·				:
T =	0	0	0		<i>s</i> ₀	s_1	<i>s</i> ₂		s _{2n}	<i>s</i> _{2<i>n</i>+1}
.	0	0	0		w ₀	W_1	<i>W</i> ₂		W _{2n}	<i>W</i> _{2<i>n</i>+1}
	s _{2n}	s_{2n+1}	0	0		·•.	·		<i>s</i> _{2<i>n</i>-2}	<i>s</i> _{2<i>n</i>-1}
	W _{2n}	2_{2n+1}	0	0			·	·	<i>W</i> _{2<i>n</i>-2}	<i>w</i> _{2<i>n</i>-1}
	÷		·					·	÷	:
	<i>s</i> ₂	<i>S</i> 3		s_{2n+1}	0			0	<i>s</i> ₀	<i>s</i> ₁
(<i>W</i> ₂	W ₃		W_{2n+1}	0			0	w ₀	w1)

T is a $2n_f \times 2n_f$ matrix with 2n + 2 diagonals and a block matrix $(2n \times 2n)$ in the lower left corner.

David Ferrone (UConn)

To simplify the appearance, let

$$T_{k} = \begin{pmatrix} s_{2k} & s_{2k+1} \\ w_{2k} & w_{2k+1} \end{pmatrix}$$
$$T_{a} = \begin{pmatrix} T_{0} & T_{1} & \dots & T_{n-1} \\ 0 & T_{0} & \dots & T_{n-2} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & T_{0} \end{pmatrix}$$
$$T_{b} = \begin{pmatrix} T_{n} & 0 & 0 & 0 \\ T_{n-1} & T_{n} & 0 & 0 \\ \vdots & \ddots & 0 \\ T_{1} & T_{2} & \dots & T_{n} \end{pmatrix}$$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

November 29, 2010 35 / 42

Then

$$T = \begin{pmatrix} T_a & T_b & 0_{2n \times 2k} \\ 0_{2k \times 2n} & T_c & \\ T_b & 0_{2n \times 2k} & T_a \end{pmatrix}$$

Where $n_f = 2n + k$, and T_c is a $2k \times 2(n + k)$ matrix whose rows are simply shifts of $\begin{pmatrix} T_0 & T_1 & \dots & T_n \end{pmatrix}$:

$$T_{c} = \begin{pmatrix} T_{0} & T_{1} & \dots & T_{n} & 0_{2 \times 2} & \dots & 0_{2 \times 2} \\ 0_{2 \times 2} & T_{0} & T_{1} & \dots & T_{n} & 0_{2 \times 2} & \dots \\ \vdots & & \ddots & \ddots & & \\ 0_{2 \times 2} & \dots & T_{0} & T_{1} & \dots & T_{n-1} & T_{n} \end{pmatrix}$$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

E ▶ ◀ E ▶ E ∽ Q ↔ November 29, 2010 36 / 42

For k = 0, ..., n, defining $S_k = \begin{pmatrix} s_{2k} & s_{2k+1} \end{pmatrix}$, W_k , \tilde{S}_k , and \tilde{W}_k similarly, and S_a , S_b , \tilde{S}_a , \tilde{S}_b , W_a , W_b , \tilde{W}_a , \tilde{W}_b in the same manner as T, we have the following: Lemma

$$T_a \widetilde{S}_b^* = 0$$

Proof:

$$T_{a}\widetilde{S}_{b}^{*} = \begin{pmatrix} T_{0} & T_{1} & T_{2} & \dots & T_{n-1} \\ 0 & T_{0} & T_{1} & \dots & T_{n-2} \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & T_{0} & T_{1} \\ 0 & 0 & 0 & \dots & T_{0} \end{pmatrix} \begin{pmatrix} \widetilde{S}_{n}^{*} & \widetilde{S}_{n-1}^{*} & \dots & \widetilde{S}_{1}^{*} \\ 0 & \widetilde{S}_{n}^{*} & \dots & \widetilde{S}_{2}^{*} \\ \vdots & & \ddots & \vdots \\ 0 & \dots & \widetilde{S}_{n}^{*} & \widetilde{S}_{n-1}^{*} \\ 0 & 0 & \dots & \widetilde{S}_{n}^{*} \end{pmatrix}$$

David Ferrone (UConn)

Biorthogonal MRA on Intervals

$$T_{a}\widetilde{S}_{b}^{*} = \begin{pmatrix} s_{0} & s_{1} & s_{2} & s_{3} & \dots & s_{2n-2} & s_{2n-1} \\ w_{0} & w_{1} & w_{2} & w_{3} & \dots & w_{2n-2} & w_{2n-1} \\ 0 & 0 & s_{0} & s_{1} & \dots & s_{2n-4} & s_{2n-3} \\ 0 & 0 & w_{0} & w_{1} & \dots & w_{2n-4} & w_{2n-3} \\ \vdots & \vdots & \ddots & \ddots & & \vdots \\ 0 & 0 & 0 & 0 & \dots & s_{0} & s_{1} \\ 0 & 0 & 0 & 0 & \dots & s_{0} & s_{1} \\ 0 & 0 & 0 & 0 & \dots & w_{0} & w_{1} \end{pmatrix} \begin{pmatrix} \tilde{s}_{2n} & \tilde{s}_{2n-2} & \dots & \tilde{s}_{2} \\ \tilde{s}_{2n+1} & \tilde{s}_{2n-1} & \dots & \tilde{s}_{3} \\ 0 & \tilde{s}_{2n} & \dots & \tilde{s}_{4} \\ 0 & \tilde{s}_{2n+1} & \dots & \tilde{s}_{5} \\ 0 & 0 & \dots & \tilde{s}_{6} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & w_{0} & w_{1} \end{pmatrix}$$

Similarly,

$$T_{a}\widetilde{W}_{b}^{*} = \widetilde{T}_{a}S_{b}^{*} = \widetilde{T}_{a}W_{b}^{*} = 0$$

and

$$\widetilde{T}_b S_a^* = \widetilde{T}_b W_a^* = T_b \widetilde{S}_a^* = T_b \widetilde{W}_a^* = 0$$

Biorthogonal MRA on Intervals

Theorem

Given T and \tilde{T} biorthogonal, there exist biorthogonal pairs of matrices (U, \tilde{U}) and (V, \tilde{V}) such that $Q = \tilde{U}T\tilde{V}$, $\tilde{Q} = U\tilde{T}V$ are biorthogonal and banded. Proof: Choose (U, \tilde{U}) an arbitrary biorthogonal pair, and define

$$V = \begin{pmatrix} (R_a S_a)^* & 0_{2n,2n_f-2n} & (R_b S_b)^* \\ 0_{2n_f-2n,n} & I_{2n_f-2n,2n_f-2n} & 0_{2n_f-2n,n} \end{pmatrix}$$

$$\widetilde{V} = \left(\begin{array}{ccc} \widetilde{W}_a^* & \mathbf{0}_{2n,2n_f-2n} & \widetilde{W}_b^* \\ \mathbf{0}_{2n_f-2n,n} & I_{2n_f-2n,2n_f-2n} & \mathbf{0}_{2n_f-2n,n} \end{array}\right)$$

 (V, \widetilde{V}) must be biorthogonal. This implies $R_a S_a \widetilde{W}_a^* = I$ and $R_b S_b \widetilde{W}_b^* = I$, which defines R_a and R_b (provided $S_a \widetilde{W}_a^*$ and $S_b \widetilde{W}_b^*$ are invertible.)

$$T\widetilde{V} = \begin{pmatrix} T_{a} & T_{b} & 0_{2n \times 2k} \\ 0_{2k \times 2n} & T_{c} & \\ T_{b} & 0_{2n \times 2k} & T_{a} \end{pmatrix} \begin{pmatrix} \widetilde{W}_{a}^{*} & 0_{2n,2n_{f}-2n} & \widetilde{W}_{b}^{*} \\ 0_{2n_{f}-2n,n} & I_{2n_{f}-2n,2n_{f}-2n} & 0_{2n_{f}-2n,n} \end{pmatrix}$$
$$= \begin{pmatrix} T_{a}\widetilde{W}_{a}^{*} & T_{b} & 0 & T_{a}\widetilde{W}_{b}^{*} \\ 0 & T_{c} & 0 \\ T_{b}\widetilde{W}_{a}^{*} & 0 & T_{a} & T_{b}\widetilde{W}_{b}^{*} \end{pmatrix} = \begin{pmatrix} T_{a}\widetilde{W}_{a}^{*} & T_{b} & 0 & 0 \\ 0 & T_{c} & 0 \\ 0 & 0 & T_{a} & T_{b}\widetilde{W}_{b}^{*} \end{pmatrix}$$

A similar result holds for TV.

メロト スポト メヨト メヨト 二日

Some questions/goals yet to be considered:

- Address continuity and regularity of the MRA of L²([0, 2n_f])
- Extend the concept of biorthogonal MRA to dual spaces beyond L^2
- Can scaling functions not of compact support be used somehow?
- How does one handle *signals* of odd lengths without zero padding (adding zeroes at the end of the data)?

References

Thanks!

- Daubechies, Ingrid Ten Lectures On Wavelets
- Keinert, Fritz Wavelets and Multiwavelets
- Madych, W. R. Finite Orthogonal Transforms and Multiresolution Analyses on Intervals