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Overview

e Background:

e Scaling Functions
e Multiresolution Analyses (MRA) and Wavelet Functions
e The Discrete Wavelet Transform (DWT)

e Motivation: Finite Orthogonal Transforms and MRA on Intervals
(Madych, 1997)

e Finite Biorthogonal Transforms and MRA on Intervals
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Scaling Functions
Definition
A function ¢ : R — C is called a scaling function (with scaling coefficients {s;}) if
it satisfies the refinement equation:

o(x) = Zsk¢(2x — k)
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Scaling Functions

Definition
A function ¢ : R — C is called a scaling function (with scaling coefficients {s;}) if
it satisfies the refinement equation:

o(x) = Zsk¢(2x — k)

Let 1 .
m(§) = 5 ; sce K
then
s0=-m(5)4(5)
i.e.

3e) = ﬁm () é0
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A scaling function could be interpreted as a fixed point of the operator
TF =) scf(2x — k)
k

and if ¢ is continuous, it can be defined iteratively by

o (x) = Zsk¢(n)(2x — k)
k
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Examples of Scaling Functions
The characteristic (Haar) function on [0, 1] with coefficients {so,s1} = {1,1}

The hat function on [—1, 1] with coefficients {s_1, 50,51} = {%,1, 3}
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Definition

¢ is called orthogonal if (p(x — k), p(x —j)) = O«
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Definition

¢ is called orthogonal if (¢(x — k), p(x —j)) = O j

If ¢ is an orthogonal scaling function, then

E SkSk—2j = 250,1'
k
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Definition

¢ is called orthogonal if (¢(x — k), p(x —j)) = O j

If ¢ is an orthogonal scaling function, then
Zsksk_gj = 250,1'
k

To see this, notice

do.j = ($(x), 6(x = J)) = <Z skd(2x — k), D sn(2x — 2j — n)>
=) sksa ($(2x — k), $(2x — (2 + n)))

1 1
= 5 §5k5m72j <¢(t - k),¢(t — m)) = 5 ;Skskfy
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MRA

Definition
A Multiresolution Analysis (MRA) of L?(R) is an infinite nested sequence of
subspaces of L2(R)
...cVaicVocVicC...
with the properties
(i) U, Vi is dense in L?(R)
(i) N, Vo = {0)
(iii) f(x) e V, <= f(2x) € Vyq1 forallneZ
(iv) f(x) eV, < f(x—2""k)e V,foralln keZ
(v) 3¢ such that {¢(x — k) : k € Z} forms an orthonormal basis of Vg

{Gnk =27¢(2"x — k) : k € Z} forms an orthonormal basis for V.
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For ¢ orthogonal, P, : L?> — V,, is given by

Pn(f) - Z <f7¢n,k> ¢n,k

k

Functions in V,, are said to have resolution or scale 2 ".
P,.f is an approximation to f at resolution 27", and P,f — f in L°.

The fine detail at resolution 2" is defined:
Qnf(x) = Ppi1f(x) — Pof(x)

The range of Q, coincides with W, the orthogonal complement of V,, within
Voi1. We have

W, LV, and V@ W, = Vs
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Approximations of Sine
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Wavelets

The spaces {W,} satisfy conditions similar to that of a MRA. For a MRA with
orthogonal scaling function ¢, the following can be demonstrated:

(i) D, Wn =12

(i) WelW, if n#k

(i) f(x) € W, <= f(2x) € Wpi1

(iv) f(x) e W, < f(x—2""k)e W,

(v) I € Wy such that {¢(x — k) }Horms an orthonormal basis of W.
(= {Ynk =229(2"x — k) : k € Z} forms a basis for W,.)

(vi) (x) =Y, wkp(2x — k) for some coefficients w.
It can be shown that wy = (—1)*sy_, for any odd N.

1 is called the wavelet function.
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Haar Scaling and Wavelet Functions
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Daubechies Scaling and Wavelet Functions
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Orthogonality Conditions

Just as

E SkSk—2j = 200,
K

we will have

E Wi Wk _2j = 200
p

Since W, LV,,, we have (1)(x), ¢(x — j)) = 0, which implies:

ZSka_zj =0 Vj cZ
k
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Discrete Wavelet Transform

Since
n
Vipp=W,o V=W, 6 (Wp1® Voa)=...= Vi@ (@Wk> ;
k=1
n—1
VFEV, f=Pf=Pf+) Qf.
k=1

So a function in V), can be expressed as the sum of its approximation at a lower
resolution and all of the fine detail at intermediate resolutions.
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Fine Detail of a Sine Wave

‘ Qf
w 0
"
:
2
.
x
Qf ! Qf :
1 u 2 o
(U iU N~y :
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Let En,k - <f7¢n,k> and hn,k = <f71/)n,k>y

P,f = Zén,kéﬁn,k = Zén_1,k¢n—1,k + Z hn—1 k¥n—1k-
K K K
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Let px = (f,dnk) and hp i = (F,9n k),

P,f = Zémkqﬁn,k = Zén_1,k¢n—1,k + Z hn—1 k¥n—1k-
K K K

b1 = E Si—okln
J

hn—1x = E Wj_2iln j
J
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With matrix notation,

gn—l,O . S0 S1 S S3 0 0
En—l,l = . 0 0 S0 S1 S S3
gn—l,Z e 0 0 0 0 SO S1
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With matrix notation,

gn—l,O . S0 S1 S S3 0 0
En—l,l = . 0 0 S0 S1 S S3

gn—l 2 e 0 0 0 0 SO S1
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The Implied MRA from S

Suppose
Vo = {6k(x) = d(x — k) : k € Z}
and recall

6 (5 K) = Y90l — G +20) = 3 sm-aulx — m)

J
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The Implied MRA from S

Suppose
Vo = {dk(x) = ¢(x — k) : k € Z}
and recall
¢ (% - k) =S 50(x = (1 +2K) = sm_awd(x — m)
J m
¢0(§) sol ss & s3 0 0 ... QSO.(X)
p1(3)]=|--- 0 0 s s 5 s $1(x)
$2(%) e 00 0 0 s s |d(x)
Define N N
Ve ={on(3) =0 (3 k) ke
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Dealing with Finite Data

Given a sequence {fi }kez € £? there is an orthogonal decomposition in ¢ @ (2
defined by

by = Zsj—zkﬂ'
J

hy = Z wj_okf;
J

One method of extending a signal of finite length is to periodize the data.
Assume {f} is real for k =0,1,...,2n — 1.

Define F; = f, when j = k 4+ 2nsm for some m € Z.
Apply the previous algorithm to {F;}jcz. It will produce periodic £ and h.
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Simple Periodic Example

4 scaling coefficients and 10 points of data.

éo So S1 S S3 0 0 0 0 0 0 fE)
ho wp wi; Wy W3 0 0 0 0 0 0 fi
14 1 0 0 S0 S1 So 53 0 0 0 0 f2
hl 0 0 Wwo WwWi; Wy W3 0 0 0 0 f3
/l 2 . 0 0 0 0 S0 51 So S3 0 0 f4
hz - 0 0 0 0 W W1 W W3 0 0 f5
Y4 3 0 0 0 0 0 0 S0 S1 So S3 f—s
h3 0 0 0 0 0 0 wo wq 1% w3 f7
64 S S3 0 0 0 0 0 0 So S1 fg
ha w, w3 0 0 0 0 0 0 w w fo
d=Tf
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MRA on Intervals

Under the assumption that there are 2n¢ points of data in {f;}, 2n + 2 nonzero
scaling coefficients, and nf > 2n, we have the following;:
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MRA on Intervals

Under the assumption that there are 2n¢ points of data in {f;}, 2n + 2 nonzero
scaling coefficients, and nf > 2n, we have the following:

Theorem (Madych, 1997)

There exist orthogonal U and V so that Q = UTV is a banded matrix satisfying
QR*Q =2I.

Under simple conditions (e.g. if the magnitude of the first entry of Q@ < \/2) there
is a well defined biresolution analysis of L?([0,2n¢]) such that V_1 & W_1 = V.
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MRA on Intervals

Under the assumption that there are 2n¢ points of data in {f;}, 2n + 2 nonzero
scaling coefficients, and nf > 2n, we have the following:

Theorem (Madych, 1997)

There exist orthogonal U and V so that Q = UTV is a banded matrix satisfying
QR*Q =2I.

Under simple conditions (e.g. if the magnitude of the first entry of Q@ < \/2) there
is a well defined biresolution analysis of L?([0,2n¢]) such that V_1 & W_1 = V.

(Notice \%Q is an orthogonal matrix.)
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Proof when n=1
Suppose that there are 4 nonzero scaling coefficients. Recall

E SkSk—2j = 250,1'
k

and define
1 1

nN=—m——— n=———.
\V/ss+ st /55 + S5

Then the matrix

nSo 0 O 0 0 0 sy
nS1 0 0 0 0 0 ns3
0 1 0 0 00 O
0 01 0 00 O
V= :
0 0 O 1 00 O
0 0 O 0 1.0 O
0 0 O 0 01 O

is orthogonal.
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Now TV =

ss s s s3 0 0

0
Wwo Wwi Wy w3 0 0 0 foSo 00 0 0 0 r 15
nss 0 O 0 0 0 nss
0 0 s s S s 0 o 1 0 000 s
0 0 ww wmi w ws 0 o 0 1 " 00 o
0 0 0 S0 S1 S S3 0 0 0 1 ' 0 0o 0
0 O 0 wp wg wy ws 0 0 0 0 10 o
w0 0 O BN 0 01 0
wp w3 0 0 0 wo w1

ZSka_zj =0 and Zsksk_zj =2)p; = TV is banded.
K K
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Choosing arbitrary orthogonal matrices U, and U, and defining

U 0 0
u=|0 [ 0
0 0 U,
will allow
Q=UTV

to be orthogonal (after multiplying by %) while giving some control over the
actual entries of Q.
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(i) (8)v

M is a simple modification of S, and its rows may define a MRA of L3([0, 2ny]).
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(i) (8)v

M is a simple modification of S, and its rows may define a MRA of L3([0, 2ny]).

If
dp a1 an 0 0 0
0 S0 S1 So S3 0
0 0 0 S0 S1 0
M = )
0 ss s S s3 0
0 0 0 by b by

Vo C L2([0, 2n¢]) consists of {pa(x), $j(x), ds(x)} with j =0,...,2ns — 3.
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If Vo consists of {¢a(x), ¢j(x), ds(x)}, define

v,lz{(;sA( ). ¢,( ),¢B( )b =0, =3

where

o (g) = appa(x) + a1d(x) + a26(x — 1)

6 (5 —4) = s00(x = 2)) + s19(x = 2 = 1) + 526(x — 2j = 2) + s39(x — 2] — 3)

o8 ( + ”f) = bop(x — 2ns + 4) + b1(x — 2nf + 3) + bapp(x)

It can be shown that this MRA is well-defined provided |ag| < v/2 and |by| < v/2.
0
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Why is this the definition of ¢g?
o8 ( + nf) = bod(x — 2ns + 4) + bip(x — 2ns + 3) + bapp(x)
Consider that on a finite interval [0, 2n¢] when you dilate a function which

terminates at the right endpoint, the support is no longer in the interval. It makes
more sense to interpret dilation restricted to the interval. Define V_; then, as

consisting of
= {on (3 (3) o (5 )} 5=

and note now that the definition of ¢ (5 + ns) has not changed, it is still M (¢;)
as required. This explains the odd shift in the definition.

It is easier to consider ¢g(x) = ¢p(x + 2n¢). In this case we simply add 2n¢ to
the argument in the equation defining ¢z and observe that it is now equivalent to

Q;B (%) = bo(b(X =+ 4) =+ bld)(X + 3) + bQQZB(X)
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Example of MRA on L?([0, 10])
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Biorthogonality

Definition ) )
¢ is biorthogonal to ¢ if (¢(x — k), d(x — j)) = Ok,
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Biorthogonality

Definition ) )
¢ is biorthogonal to ¢ if (¢(x — k), d(x — j)) = Ok,

A necessary condition is that

> Sk8koj = 200,
K
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The projections onto the spaces V), and V,, are given by

Pnf = Z<f>én,k>¢n,k ﬁnf = Z<f7¢n,k>(l’;n,k
k k
Vn ©® Wn — Vp+1 Vn P Wn = ’\7,,+1

however these sums are not orthogonal.
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The projections onto the spaces V), and V,, are given by

Pnf = Z<f>én,k>¢n,k ﬁnf = Z<f7¢n,k>(l’;n,k
k k
Vn ©® Wn — Vp+1 Vn P Wn = ’\7,,+1

however these sums are not orthogonal.
The wavelet coefficients are also intertwined:

Wi = (_1)k§ka> Wy = (—1)k5N7k N odd
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The projections onto the spaces V), and V,, are given by

Pnf = Z<f>én,k>¢n,k ﬁnf = Z<f7¢n,k>(l’;n,k
k k
Vn ©® Wn — Vp+1 Vn P Wn = ’\7,,+1

however these sums are not orthogonal.
The wavelet coefficients are also intertwined:

Wi = (_1)k§ka> Wy = (—1)k5N7k N odd

The biorthogonality conditions are:

E Skgk_2j = 250)]
k

E Wkﬁ/k_QJ' = 2(5071'
k

E SkWik—2j = E Wi Sk—2j = 0
P K
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Biorthogonal Example

25
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Biorthogonal Setup

{5—17503 51} - {53754755}

{574, §737 §727 §717§07§17§27 §3a §4} — {507517527§3a §47 g57 §67 §77§8}

{Oa 0707537545 S5, 070707 O}

{507 51752753,-%4; §53 gﬁa §77 587 O}
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T consists of rows of scaling and wavelet coefficients that look like
{Oa 07 07 53, 54, S5, 07 07 Oa 0}
{§8; 757» §6a 7557 §4a 753, §27 751, §0, 0}

with T defined similarly.

David Ferrone (UConn) Biorthogonal MRA on Intervals November 29, 2010 33 /42



T consists of rows of scaling and wavelet coefficients that look like
{Oa 07 07 53, 54, S5, 07 07 Oa 0}
{58; 757» §6a 755» §4a 7537 §27 751, §07 0}

with T defined similarly.

Because of the biorthogonality conditions, (% T, %7’) are biorthogonal, i.e.
1~
~TT* =1
2
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T consists of rows of scaling and wavelet coefficients that look like
{07 07 07 53, 54, S5, 07 07 Oa 0}
{58; 7577 §65 7557 §45 7537 §27 751) §07 0}

with T defined similarly.

Because of the biorthogonality conditions, (% T, %7’) are biorthogonal, i.e.

In this case we require biorthogonal (U, D) (V, V) sothat Q = UTV,
Q = UTV are banded matrices satisfying

QQ* =2l
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S0 S1
wWo wq

0 0

0 0

0 0

T =

0 0
Son Son+1
Wop  22n41
S S3
wa w3

52
W2

So

o O O o

53 cee o S2p41
w3 e Won41
S1 S S3
w1 Wo w3
So 51
Wo wi
0
0
Sony1 O
wopr1 O

2
wa

0
0
S2n+1 0
Wan i1 0
S2n
W2n
S2p—2
W2p—2
0 So
0 Wo

o

S2n+1
W2n+1

S2n—1

W2n—1

S1
w1

T is a 2nf X 2nf matrix with 2n+ 2 diagonals and a block matrix (2n x 2n) in the

lower left corner.
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To simplify the appearance, let

To T1 Th—1
0 To Th2
Ta = .
0 0 .
0 0 0 To
T, 0 0 0
Th1 T, O 0
Ty =
0
n T Th

David Ferrone (UConn) Biorthogonal MRA on Intervals November 29, 2010 35 /42



Then
T, Ty O2nx2k
T = O2k x2n Tc
Tb 02n><2/< Ta

Where nf = 2n+ k, and T, is a 2k x 2(n+ k) matrix whose rows are simply shifts
of (To T1 ... T,):

TO T]_ e Tn 02><2 . e 02><2
Ooxo To T1 ... T, 0oy
Tc - . ) .
02><2 e TO T]_ P Tnfl Tn
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For k =0, ..., n, defining Sy = (52k 52k+1), W, gk, and Wk similarly, and S,
Sp, 53, gb, W,, W, Wa, VNV[7 in the same manner as T, we have the following:

Lemma
7.5, =0
Proof:
To Ti T Th1 Sy S5 St
0 7—O Tl Tn72 0 S: 5;
T.S; = : - : : :
0 0 ... T, T 0 ... S 5,
0 0 0 To 0 0 5
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Sn Sp—2 ... B

S0 S1 S S3 c.. S22 S2n—1 §2n+1 §2n71 e §3
Wy Wwip Wy W3 ... Woy_ o Wop_1 0 Son . Sa
0 0 So S1 . Sopn—a Son—3 0 §2n+1 . §5
Tasg — 0 0 WwWo Wi ... Wop_g4 Wop_3 0 0 . §6
0 0 0 O S0 51
0 0 0 O wWo wy : : 2n
0 0 coo Sopq1
L]
Similarly,

T,W; = T,5; = T.W; =0

and _ B B .
TpSy = TyW, = TpS; = TpyW) =0
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Theorem -
Given T and T biorthogonal, there exist biorthogonal pairs of matrices (U, U)

and (v7 \7) such that Q = UTV, Q = UTV are biorthogonal and banded.

Proof: _
Choose (U, U) an arbitrary biorthogonal pair, and define

V_( (Rasa)* 02[’772/7{—2’7 (Rbsb)* )

02nf—2n,n l2nf—2n,2nf—2n 02nf—2n,n

V — ( Wa* 02n,2nf—2n W[: >
02”{—2",” I2nf—2n,2nf—2n 02nf—2n,n

(v, V) must be biorthogonal. This implies R,S,W; = I and RyS, W, = I, which
defines R, and R}, (provided SQW;‘ and SbVNVg‘ are invertible.)
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TV =1 Ozkx2n T,

T T, 0 — —
. a b 2nx2k < W: 02",2”{—2" W[; )
Ty O2nxok T,

02’7{72"7" /2nf72n,2nf72n 02nf72n,n

W T, 0 T,W; T.Wr T, 0 0
= 0 T. 0 — 0 T, 0
TWW: 0 T, T,W; 0 0 T, ToW;
A similar result holds for TV. O
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Some questions/goals yet to be considered:

Address continuity and regularity of the MRA of L2([0,2n¢])
Extend the concept of biorthogonal MRA to dual spaces beyond L2

Can scaling functions not of compact support be used somehow?

How does one handle signals of odd lengths without zero padding (adding
zeroes at the end of the data)?
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