
Finite Biorthogonal Transforms
and

Multiresolution Analyses on Intervals

David Ferrone

The University of Connecticut

November 29, 2010



Overview

• Background:
• Scaling Functions
• Multiresolution Analyses (MRA) and Wavelet Functions
• The Discrete Wavelet Transform (DWT)

• Motivation: Finite Orthogonal Transforms and MRA on Intervals
(Madych, 1997)

• Finite Biorthogonal Transforms and MRA on Intervals
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Scaling Functions

Definition
A function φ : R→ C is called a scaling function (with scaling coefficients {sk}) if
it satisfies the refinement equation:

φ(x) =
∑
k

skφ(2x − k)

Let

m(ξ) =
1

2

∑
k

ske−ikξ

then

φ̂(ξ) = m

(
ξ

2

)
φ̂

(
ξ

2

)
i.e.

φ̂(ξ) =
∞∏
k=1

m

(
ξ

2k

)
φ̂(0)
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A scaling function could be interpreted as a fixed point of the operator

Tf =
∑
k

sk f (2x − k)

and if φ is continuous, it can be defined iteratively by

φ(n+1)(x) =
∑
k

skφ
(n)(2x − k)
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Examples of Scaling Functions

The characteristic (Haar) function on [0, 1] with coefficients {s0, s1} = {1, 1}

The hat function on [−1, 1] with coefficients {s−1, s0, s1} = { 12 , 1,
1
2}
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Definition

φ is called orthogonal if 〈φ(x − k), φ(x − j)〉 = δk,j

If φ is an orthogonal scaling function, then∑
k

sksk−2j = 2δ0,j

To see this, notice

δ0,j = 〈φ(x), φ(x − j)〉 =

〈∑
k

skφ(2x − k),
∑
n

snφ(2x − 2j − n)

〉

=
∑
k,n

sksn 〈φ(2x − k), φ(2x − (2j + n))〉

=
1

2

∑
k,m

sksm−2j 〈φ(t − k), φ(t −m)〉 =
1

2

∑
k

sksk−2j
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MRA

Definition
A Multiresolution Analysis (MRA) of L2(R) is an infinite nested sequence of
subspaces of L2(R)

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .

with the properties

(i)
⋃

n Vn is dense in L2(R)

(ii)
⋂

n Vn = {0}
(iii) f (x) ∈ Vn ⇐⇒ f (2x) ∈ Vn+1 for all n ∈ Z
(iv) f (x) ∈ Vn ⇐⇒ f (x − 2−nk) ∈ Vn for all n, k ∈ Z
(v) ∃φ such that {φ(x − k) : k ∈ Z} forms an orthonormal basis of V0

{φn,k = 2
n
2φ(2nx − k) : k ∈ Z} forms an orthonormal basis for Vn.
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For φ orthogonal, Pn : L2 → Vn is given by

Pn(f ) =
∑
k

〈f , φn,k〉φn,k

Functions in Vn are said to have resolution or scale 2−n.
Pnf is an approximation to f at resolution 2−n, and Pnf → f in L2.

The fine detail at resolution 2−n is defined:

Qnf (x) = Pn+1f (x)− Pnf (x)

The range of Qn coincides with Wn, the orthogonal complement of Vn within
Vn+1. We have

Wn⊥Vn and Vn ⊕Wn = Vn+1

David Ferrone (UConn) Biorthogonal MRA on Intervals November 29, 2010 8 / 42



Approximations of Sine
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Wavelets

The spaces {Wn} satisfy conditions similar to that of a MRA. For a MRA with
orthogonal scaling function φ, the following can be demonstrated:

(i)
⊕

n Wn = L2

(ii) Wk⊥Wn if n 6= k

(iii) f (x) ∈Wn ⇐⇒ f (2x) ∈Wn+1

(iv) f (x) ∈Wn ⇐⇒ f (x − 2−nk) ∈Wn

(v) ∃ψ ∈W0 such that {ψ(x − k)}forms an orthonormal basis of W0.
( =⇒ {ψn,k = 2

n
2ψ(2nx − k) : k ∈ Z} forms a basis for Wn.)

(vi) ψ(x) =
∑

k wkφ(2x − k) for some coefficients wk .
It can be shown that wk = (−1)ksN−k for any odd N.

ψ is called the wavelet function.
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Haar Scaling and Wavelet Functions

{s0 = 1, s1 = 1}
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Daubechies Scaling and Wavelet Functions

{s0 = 1+
√
3

4 , s1 = 3+
√
3

4 , s2 = 3−
√
3

4 , s3 = 1−
√
3

4 }
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Orthogonality Conditions

Just as ∑
k

sksk−2j = 2δ0,j

we will have ∑
k

wkwk−2j = 2δ0,j

Since Wn⊥Vn, we have 〈ψ(x), φ(x − j)〉 = 0, which implies:∑
k

skwk−2j = 0 ∀j ∈ Z
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Discrete Wavelet Transform

Since

Vn+1 = Wn ⊕ Vn = Wn ⊕ (Wn−1 ⊕ Vn−1) = . . . = Vl ⊕

(
n⊕

k=l

Wk

)
,

∀f ∈ Vn f = Pnf = Pl f +
n−1∑
k=l

Qk f .

So a function in Vn can be expressed as the sum of its approximation at a lower
resolution and all of the fine detail at intermediate resolutions.
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Fine Detail of a Sine Wave
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Let `n,k = 〈f , φn,k〉 and hn,k = 〈f , ψn,k〉,

Pnf =
∑
k

`n,kφn,k =
∑
k

`n−1,kφn−1,k +
∑
k

hn−1,kψn−1,k .

`n−1,k =
∑
j

sj−2k`n,j

hn−1,k =
∑
j

wj−2k`n,j
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With matrix notation,

...
`n−1,0
`n−1,1
`n−1,2

...

 =



. . .

. . . s0 s1 s2 s3 0 0 . . .

. . . 0 0 s0 s1 s2 s3 . . .

. . . 0 0 0 0 s0 s1 . . .
. . .





...
`n,0
`n,1
`n,2

...


(
`n−1
hn−1

)
=

(
S
W

)(
`n
)

1

2

(
S
W

)∗(
`n−1
hn−1

)
=
(
`n
)
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The Implied MRA from S

Suppose
V0 = {φk(x) = φ(x − k) : k ∈ Z}

and recall

φ
(x

2
− k
)

=
∑
j

sjφ(x − (j + 2k)) =
∑
m

sm−2kφ(x −m)



...
φ0( x

2 )
φ1( x

2 )
φ2( x

2 )
...

 =



. . .

. . . s0 s1 s2 s3 0 0 . . .

. . . 0 0 s0 s1 s2 s3 . . .

. . . 0 0 0 0 s0 s1 . . .
. . .





...
φ0(x)
φ1(x)
φ2(x)

...


Define

V−1 =
{
φk

(x

2

)
= φ

(x

2
− k
)

: k ∈ Z
}
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Dealing with Finite Data

Given a sequence {fk}k∈Z ∈ `2 there is an orthogonal decomposition in `2 ⊕ `2
defined by

`k =
∑
j

sj−2k fj

hk =
∑
j

wj−2k fj

One method of extending a signal of finite length is to periodize the data.

Assume {fk} is real for k = 0, 1, . . . , 2nf − 1.
Define Fj = fk when j = k + 2nf m for some m ∈ Z.
Apply the previous algorithm to {Fj}j∈Z. It will produce periodic ` and h.
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Simple Periodic Example

4 scaling coefficients and 10 points of data.

`0
h0
`1
h1
`2
h2
`3
h3
`4
h4


=



s0 s1 s2 s3 0 0 0 0 0 0
w0 w1 w2 w3 0 0 0 0 0 0
0 0 s0 s1 s2 s3 0 0 0 0
0 0 w0 w1 w2 w3 0 0 0 0
0 0 0 0 s0 s1 s2 s3 0 0
0 0 0 0 w0 w1 w2 w3 0 0
0 0 0 0 0 0 s0 s1 s2 s3
0 0 0 0 0 0 w0 w1 w2 w3

s2 s3 0 0 0 0 0 0 s0 s1
w2 w3 0 0 0 0 0 0 w0 w1





f0
f1
f2
f3
f4
f5
f6
f7
f8
f9



d = Tf
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MRA on Intervals

Under the assumption that there are 2nf points of data in {fj}, 2n + 2 nonzero
scaling coefficients, and nf > 2n, we have the following:

Theorem (Madych, 1997)
There exist orthogonal U and V so that Q = UTV is a banded matrix satisfying
Q∗Q = 2I .

Under simple conditions (e.g. if the magnitude of the first entry of Q <
√

2) there
is a well defined biresolution analysis of L2([0, 2nf ]) such that V−1 ⊕W−1 = V0.

(Notice 1√
2

Q is an orthogonal matrix.)
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Proof when n=1
Suppose that there are 4 nonzero scaling coefficients. Recall∑

k

sksk−2j = 2δ0,j

and define

r0 =
1√

s20 + s21
r1 =

1√
s22 + s23

.

Then the matrix

V =



r0s0 0 0 . . . 0 0 0 r1s2
r0s1 0 0 . . . 0 0 0 r1s3

0 1 0 . . . 0 0 0 0
0 0 1 . . . 0 0 0 0

. . .
. . .

0 0 0 . . . 1 0 0 0
0 0 0 . . . 0 1 0 0
0 0 0 . . . 0 0 1 0


is orthogonal.
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Now TV =

s0 s1 s2 s3 0 0 . . . 0
w0 w1 w2 w3 0 0 . . . 0
0 0 s0 s1 s2 s3 . . . 0
0 0 w0 w1 w2 w3 . . . 0

. . .
. . .

0 0 . . . 0 s0 s1 s2 s3
0 0 . . . 0 w0 w1 w2 w3

s2 s3 0 0 . . . 0 s0 s1
w2 w3 0 0 . . . 0 w0 w1





r0s0 0 0 . . . 0 0 0 r1s2
r0s1 0 0 . . . 0 0 0 r1s3

0 1 0 . . . 0 0 0 0
0 0 1 . . . 0 0 0 0

. . .
. . .

0 0 0 . . . 1 0 0 0
0 0 0 . . . 0 1 0 0
0 0 0 . . . 0 0 1 0



∑
k

skwk−2j = 0 and
∑
k

sksk−2j = 2δ0,j =⇒ TV is banded.
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Choosing arbitrary orthogonal matrices Ux and Uy and defining

U =

Ux 0 0
0 I 0
0 0 Uy


will allow

Q = UTV

to be orthogonal (after multiplying by 1√
2

) while giving some control over the

actual entries of Q.
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Let (
M
N

)
= U

(
S
W

)
V

M is a simple modification of S , and its rows may define a MRA of L2([0, 2nf ]).

If

M =



a0 a1 a2 0 0 . . . 0
0 s0 s1 s2 s3 . . . 0
0 0 0 s0 s1 . . . 0

. . .
. . .

0 . . . s0 s1 s2 s3 0
0 . . . 0 0 b0 b1 b2


V0 ⊂ L2([0, 2nf ]) consists of {φA(x), φj(x), φB(x)} with j = 0, . . . , 2nf − 3.
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If V0 consists of {φA(x), φj(x), φB(x)}, define

V−1 =
{
φA

(x

2

)
, φj

(x

2

)
, φB

(x

2
+ nf

)}
j = 0, . . . , nf − 3

where

φA

(x

2

)
= a0φA(x) + a1φ(x) + a2φ(x − 1)

φ
(x

2
− j
)

= s0φ(x − 2j) + s1φ(x − 2j − 1) + s2φ(x − 2j − 2) + s3φ(x − 2j − 3)

φB

(x

2
+ nf

)
= b0φ(x − 2nf + 4) + b1φ(x − 2nf + 3) + b2φB(x)

It can be shown that this MRA is well-defined provided |a0| <
√

2 and |b2| <
√

2.
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Why is this the definition of φB?

φB

(x

2
+ nf

)
= b0φ(x − 2nf + 4) + b1φ(x − 2nf + 3) + b2φB(x)

Consider that on a finite interval [0, 2nf ] when you dilate a function which
terminates at the right endpoint, the support is no longer in the interval. It makes
more sense to interpret dilation restricted to the interval. Define V−1 then, as
consisting of

V−1 =
{
φA

(x

2

)
, φj

(x

2

)
, φB

(x

2
+ nf

)}
j = 0, . . . , nf − 3

and note now that the definition of φB
(
x
2 + nf

)
has not changed, it is still M (φj)

as required. This explains the odd shift in the definition.
It is easier to consider φ̃B(x) = φB(x + 2nf ). In this case we simply add 2nf to
the argument in the equation defining φB and observe that it is now equivalent to

φ̃B

(x

2

)
= b0φ(x + 4) + b1φ(x + 3) + b2φ̃B(x)
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Example of MRA on L2([0, 10])
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Biorthogonality

Definition
φ is biorthogonal to φ̃ if 〈φ(x − k), φ̃(x − j)〉 = δk,j

A necessary condition is that ∑
k

sk s̃k−2j = 2δ0,j
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The projections onto the spaces Vn and Ṽn are given by

Pnf =
∑
k

〈f , φ̃n,k〉φn,k P̃nf =
∑
k

〈f , φn,k〉φ̃n,k

Vn ⊕Wn = Vn+1 Ṽn ⊕ W̃n = Ṽn+1

however these sums are not orthogonal.

The wavelet coefficients are also intertwined:

wk = (−1)k s̃N−k , w̃k = (−1)ksN−k N odd

The biorthogonality conditions are:∑
k

sk s̃k−2j = 2δ0,j

∑
k

wk w̃k−2j = 2δ0,j

∑
k

sk w̃k−2j =
∑
k

wk s̃k−2j = 0
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Biorthogonal Example
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Biorthogonal Setup

{s−1, s0, s1} → {s3, s4, s5}

{˜̃s−4, s̃−3, s̃−2, s̃−1, s̃0, s̃1, s̃2, s̃3, s̃4} → {s̃0, s̃1, s̃2, s̃3, s̃4, s̃5, s̃6, s̃7, s̃8}

{0, 0, 0, s3, s4, s5, 0, 0, 0, 0}

{s̃0, s̃1, s̃2, s̃3, s̃4, s̃5, s̃6, s̃7, s̃8, 0}
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T consists of rows of scaling and wavelet coefficients that look like

{0, 0, 0, s3, s4, s5, 0, 0, 0, 0}

{s̃8,−s̃7, s̃6,−s̃5, s̃4,−s̃3, s̃2,−s̃1, s̃0, 0}

with T̃ defined similarly.

Because of the biorthogonality conditions,
(

1√
2

T , 1√
2

T̃
)

are biorthogonal, i.e.

1

2
T T̃ ∗ = I

In this case we require biorthogonal
(

U, Ũ
)

,
(

V , Ṽ
)

so that Q = ŨT Ṽ ,

Q̃ = UT̃ V are banded matrices satisfying

QQ̃∗ = 2I
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Q̃ = UT̃ V are banded matrices satisfying

QQ̃∗ = 2I

David Ferrone (UConn) Biorthogonal MRA on Intervals November 29, 2010 33 / 42



T consists of rows of scaling and wavelet coefficients that look like

{0, 0, 0, s3, s4, s5, 0, 0, 0, 0}

{s̃8,−s̃7, s̃6,−s̃5, s̃4,−s̃3, s̃2,−s̃1, s̃0, 0}

with T̃ defined similarly.

Because of the biorthogonality conditions,
(

1√
2

T , 1√
2

T̃
)

are biorthogonal, i.e.

1

2
T T̃ ∗ = I

In this case we require biorthogonal
(

U, Ũ
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Q̃ = UT̃ V are banded matrices satisfying

QQ̃∗ = 2I

David Ferrone (UConn) Biorthogonal MRA on Intervals November 29, 2010 33 / 42



T =



s0 s1 s2 s3 . . . s2n+1 0 . . . 0 0
w0 w1 w2 w3 . . . w2n+1 0 . . . 0 0

0 0 s0 s1 s2 s3 ... s2n+1 0
...

0 0 w0 w1 w2 w3 ... w2n+1 0
...

...
...

. . .
. . .

...
0 0 0 . . . s0 s1 s2 . . . s2n s2n+1

0 0 0 . . . w0 w1 w2 . . . w2n w2n+1

s2n s2n+1 0 0 . . .
. . .

. . . s2n−2 s2n−1

w2n 22n+1 0 0 . . .
. . .

. . . w2n−2 w2n−1
...

. . .
. . .

...
...

s2 s3 ... s2n+1 0 . . . . . . 0 s0 s1
w2 w3 ... w2n+1 0 . . . . . . 0 w0 w1



T is a 2nf × 2nf matrix with 2n + 2 diagonals and a block matrix (2n× 2n) in the
lower left corner.
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To simplify the appearance, let

Tk =

(
s2k s2k+1

w2k w2k+1

)

Ta =


T0 T1 . . . Tn−1
0 T0 . . . Tn−2

0 0
. . .

...
0 0 0 T0



Tb =


Tn 0 0 0

Tn−1 Tn 0 0
...

. . . 0
T1 T2 . . . Tn
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Then

T =

 Ta Tb 02n×2k
02k×2n Tc

Tb 02n×2k Ta



Where nf = 2n + k , and Tc is a 2k × 2(n + k) matrix whose rows are simply shifts
of
(

T0 T1 . . . Tn

)
:

Tc =


T0 T1 . . . Tn 02×2 . . . 02×2

02×2 T0 T1 . . . Tn 02×2 . . .
...

. . .
. . .

02×2 . . . T0 T1 . . . Tn−1 Tn
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For k = 0, ..., n, defining Sk =
(
s2k s2k+1

)
, Wk , S̃k , and W̃k similarly, and Sa,

Sb, S̃a, S̃b, Wa, Wb, W̃a, W̃b in the same manner as T, we have the following:

Lemma

TaS̃∗b = 0

Proof:

TaS̃∗b =


T0 T1 T2 . . . Tn−1
0 T0 T1 . . . Tn−2
...

. . .
...

0 0 . . . T0 T1

0 0 0 . . . T0




S̃∗n S̃∗n−1 . . . S̃∗1
0 S̃∗n . . . S̃∗2
...

. . .
...

0 . . . S̃∗n S̃∗n−1
0 0 . . . S̃∗n
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TaS̃∗b =



s0 s1 s2 s3 . . . s2n−2 s2n−1
w0 w1 w2 w3 . . . w2n−2 w2n−1
0 0 s0 s1 . . . s2n−4 s2n−3
0 0 w0 w1 . . . w2n−4 w2n−3
...

...
. . .

. . .
...

0 0 0 0 . . . s0 s1
0 0 0 0 . . . w0 w1





s̃2n s̃2n−2 . . . s̃2
s̃2n+1 s̃2n−1 . . . s̃3

0 s̃2n . . . s̃4
0 s̃2n+1 . . . s̃5
0 0 . . . s̃6
...

...
. . .

...
...

... s̃2n
0 0 . . . s̃2n+1



Similarly,

TaW̃ ∗
b = T̃aS∗b = T̃aW ∗

b = 0

and
T̃bS∗a = T̃bW ∗

a = TbS̃∗a = TbW̃ ∗
a = 0
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Theorem
Given T and T̃ biorthogonal, there exist biorthogonal pairs of matrices

(
U, Ũ

)
and

(
V , Ṽ

)
such that Q = ŨT Ṽ , Q̃ = UT̃ V are biorthogonal and banded.

Proof:
Choose

(
U, Ũ

)
an arbitrary biorthogonal pair, and define

V =

(
(RaSa)∗ 02n,2nf−2n (RbSb)∗

02nf−2n,n I2nf−2n,2nf−2n 02nf−2n,n

)

Ṽ =

(
W̃ ∗

a 02n,2nf−2n W̃ ∗
b

02nf−2n,n I2nf−2n,2nf−2n 02nf−2n,n

)
(

V , Ṽ
)

must be biorthogonal. This implies RaSaW̃ ∗
a = I and RbSbW̃ ∗

b = I , which

defines Ra and Rb (provided SaW̃ ∗
a and SbW̃ ∗

b are invertible.)
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T Ṽ =

 Ta Tb 02n×2k
02k×2n Tc

Tb 02n×2k Ta

( W̃ ∗
a 02n,2nf−2n W̃ ∗

b

02nf−2n,n I2nf−2n,2nf−2n 02nf−2n,n

)

=

 TaW̃ ∗
a Tb 0 TaW̃ ∗

b

0 Tc 0

TbW̃ ∗
a 0 Ta TbW̃ ∗

b

 =

 TaW̃ ∗
a Tb 0 0

0 Tc 0

0 0 Ta TbW̃ ∗
b


A similar result holds for T̃ V .
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Some questions/goals yet to be considered:

• Address continuity and regularity of the MRA of L2([0, 2nf ])

• Extend the concept of biorthogonal MRA to dual spaces beyond L2

• Can scaling functions not of compact support be used somehow?

• How does one handle signals of odd lengths without zero padding (adding
zeroes at the end of the data)?
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