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Multiresolution Analysis

Definition
A Multiresolution Analysis (MRA) of L2(R) is an infinite nested sequence of linear
subspaces of L2(R)

.L..CcVicWvwycviC...
with the properties
(i) U, Vi is dense in L?>(R), [, V.= {0}
(i) f(x)e V, <= f(2x) € Vpyq foralln € Z
(iii) f(x) eV, <= f(x—2""k) € V, foralln, k € Z
(iv) There exists ¢ such that {¢(x — k) : k € Z} forms a Riesz basis of V
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Definition
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{bnk =226(2"x — k) : k € Z} forms a Riesz basis for V.
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Biorthogonality

Suppose (real or complex) scaling coefficients {sx}, {3} are given such that ¢
and ¢ are two compactly supported scaling functions in L2(R)

B(x) = V2) skd(2x — k), H(x) = V2D 5d(2x — k),

which are biorthogonal
(9(x). &(x = n)) = don,
and whose integer shifts form Riesz bases for two subspaces of L?(R),

Vo = Linear Span of {¢(x — k) : k € Z}

Vo = Linear Span of {d(x — k) : k € Z}.
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Projection Operators

Pa(F) = D (F(x): ak(x)Gnk(x),  PalF) = D (F(x), bnk(x)) Prn(x)-

k k

Letting Q, = Py41 — P, and C~Jn = ~,,+1 — ﬁ,,, we define the spaces W, and W/,,
as the range of Q, and Q,, respectively. These spaces satisfy

Vn@ Wn: n+1, Vn@wn: ~n+1-

These are not necessarily orthogonal sums, however

W, LV, W,.LV,
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LX(R) = P W, =P W,
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Wavelet Spaces

W, = The linear span of {2"/2¢(2"x — k) : k € Z},
W, = The linear span of {2"/2(2"x — k) : k € Z}.
where

Y0) = V2Y wid(2x — k), d(x) = V2 Wnd(2x — k)

and
Wk = (_1)k§N—ka Wy = (—1)kSN_k, N odd.
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Encoding

Given an (2 sequence f = {fi}, we can use the scaling and wavelet coefficients to
decompose f into low and high frequency components. i.e.

()= ()

where Sj’k = 5j—2k, VVj’k = Wj_2k.
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Encoding

Given an (2 sequence f = {fi}, we can use the scaling and wavelet coefficients to
decompose f into low and high frequency components. i.e.

()= ()

where Sj’k = 5j—2k, VVj’k = Wj_2k.

e.g.
[0 ce S0 51 S S3 0 0 ce fo
£1 = ‘e 0 0 S0 S1 S S3 ... f1
0

0 0 0 SO S1 ... fg
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Reconstruction

(6(x). (x = n)) = don
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Reconstruction

(6(x). (x = n)) = don

implies

E SkSk—2j = E Wi Wy _2j = 0oy,
K K

g SkWi—2j = E Sewk—2j = 0,

K K

David Ferrone (UConn) Biorthogonal MRA on Intervals January 6, 2012 7/ 14



Reconstruction

(6(x). (x = n)) = don

implies

g SkSk—2j = E Wi Wy _2j = 0oy,
K K

g SKWk—2j = E Skwi—2j = 0,

K P

which provides exact reconstruction. If

(- )
(3 ©)-(3) @)=
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Finite Discrete Wavelet Transforms

To apply this theory to a finite length f = {fk}z"f ! a natural approach would be

to first periodize the data. The resulting decompositions ¢ and h are then periodic.

Considering one period of £ and h is equivalent to applying certain finite matrices
to the original finite signal f. (For convenience we again denote these matrices S,
W, S, and W.) For instance,

SO S1 S2 S3 S4 Sm 0 0 0 0
0 0 SO S1 S2 S3 S4 Sp 0 0
0 0 0O O sp si1 s» s3 s34 ss
Sy Sp 0 0 0 0 So S1 S22 S3
S5 3 4 ss 0 0 0O 0 s s

However this transformation will intertwine the data at the beginning and end of
f, which is undesirable.
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w w
biorthogonal, i.e. TT* = I.

Let T = <5> T = <£> and notice that the pair of matrices (T7 7’) are

Theorem B -
Given the matrices T and T there exist biorthogonal pairs of matrices (U, U)

and (V7 \7) such that Q = DTV CN\) — UTV are biorthogonal and consist of
banded block matrices.
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Letting Q = <A,\7) C~) = (%’) the banded matrices M and M play the role that

S and S did before.

Ae AL A, 0 0 (A A A 0 0
M = 0 Sc 0 ’ M= 0 5‘3 0
0 0 B B B 0 O Eo E1 E2

)

where S. is a block matrix of interior rows of scaling coefficients {s¢}374! that

were unaltered by the transform. Ag, Ai, Az, and By, By, B> are n x n block
matrices.
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MRA on Intervals

Define
Vo = The linear span of {(i)j(x)}J’.’;Bl
where .
baj(x) j=0,...,n—1
¢j(x)=1 o(x—j—n) j=n,....nf—n—1

B j—niin(x) j=nF—n,...,nf—1
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MRA on Intervals

Define
Vo = The linear span of {(;Sj(x)}}’;gl

where .

$aj(x) j=0,...,n—1

pi(x)=¢ o(x—j—n) j=n,....nf—n—1

¢B,j—nf+n(x) ./ =nf—=0n,...,Nf — 1
The collection is defined by the scaling relation

®o(x) = (95(x)) = M®1(2x) (1)

(%4 is a column vector (of length 2n¢) which also contains the functions ¢;, but
includes more interior functions (more shifts of the scaling function ¢).)
For instance, in the case of n = 1 we would have

da(x) = aa(2x) + a1¢(2x) 4+ a2¢(2x — 1).
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Biorthogonal MRAs on Intervals

Theorem )
There exist unique solutions to (1), {¢;} and {¢;}, which are compactly supported
and satisfy (¢;, bx) = 0.« provided that |Aq|, |Ao|, |Bal, and |Ba| < /2.
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Biorthogonal MRAs on Intervals

Theorem )
There exist unique solutions to (1), {¢;} and {¢;}, which are compactly supported
and satisfy (¢;, q~5k> = 0j k provided that |Ag|, |Ao|, |B2|, and |Bs| < V2.

We define W, as the linear span of the components of Vg, where

Vo(x) = (¢j(x)) = N1 (2x)

1

V; is defined as the linear span of the components of ®1(2x).This produces a
biresolution analysis over [0, 2n¢] consisting of finite-dimensional subspaces.

Theorem y
Given biorthogonal scaling functions ¢(x) and ¢(x) supported in a finite interval

[0,2n¢], we have Vo @ Wy = V4 and Vo P Wy = Vi (as oblique sums) as well as
Vo L W() and Vo 1L Wo.
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Regularity

Let C% denote functions which are Hoélder continuous of order «.

Theorem
If g € C* then ¢4 j(x) is C* for x > 0.
If ¢ € C* and |Ao| < 27%, then ¢aj(x) is C* at 0.
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Regularity

Let C% denote functions which are Hoélder continuous of order «.

Theorem
If g € C* then ¢4 j(x) is C* for x > 0.
If ¢ € C* and |Ao| < 27%, then ¢aj(x) is C* at 0.

Conjecture

IFY (1% k™s = 3, (—1)kk™8, = 0 for m=0,1,...,n— 1, then there exist
multiresolution analyses of L?([0,2n¢]) as defined by Theorem 3, such that there
exist Ci.n, Ck,n SO that for any x in the interval [0, 2n¢],

ZCkn¢k chn¢k m=20,1,...,n.
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