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1. Introduction

Wavelet theory over the entire real line is well understood and elegantly presented in var-
ious textbooks (e.g. [2], [3], [5]). However the construction of wavelets over finite intervals,
which is necessary for many practical applications, does not have one standard definition
(it usually depends on the specific application). A typical construction of a multiresolution
analysis begins with the intention of using it to encode a string of data (the decomposition
of a sequence) into two components. The classical way to guarantee exact, fast recon-
struction of this signal from the two components is to use an orthogonal transformation.
Another more general method is to use two separate filters - one for decomposition and one
for reconstruction. This would involve a biorthogonal transformation (details are available
in [1]).

Interpreting [4] as a natural description of orthogonal transformations over finite inter-
vals, we adapt those methods for use in the biorthogonal case. Constructions of multires-
olution analyses defined over finite intervals using biorthogonal functions are the focus of
this research. A few different methods will be described, as well as regularity and approx-
imation properties.

2. Background

We describe here the orthogonal case. An efficient way to describe the encoding process
is via matrix equations. Given scaling coefficients {s0, s1, . . . , s2n+1} satisfying

(1)
∑
k

sksk−2j = δ0j

∑
k

sk = 1

and defining the wavelet coefficients wk = (−1)ks2n+1−k, we have two infinite matrices S
and W which are orthogonal (i.e. the inverse of S is simply S∗, the complex-conjugate
transpose of S) defined by

Sjk = sk−2j

Wjk = wk−2j
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Now given a square-summable sequence f ∈ `2 we define its low and high frequency
components as

` = Sf,

h = Wf.

If we are given a sequence f = {fk}2N−1
k=0 of finite (even) length, we can extend it by

periodization, and then apply the previous theory. S and W are then finite; Each are
N × 2N matrices. For example, with 2N = 10 and n = 1 (four scaling coefficients) we
would have

S =


s0 s1 s2 s3 0 0 0 0 0 0
0 0 s0 s1 s2 s3 0 0 0 0
0 0 0 0 s0 s1 s2 s3 0 0
0 0 0 0 0 0 s0 s1 s2 s3
s2 s3 0 0 0 0 0 0 s0 s1

 .

This matrix is almost block-diagonal, but not quite, because of the block in the bottom
left corner. The computations involved would be faster if S and W were truly banded
matrices. Another issue is that the periodization we introduced has intertwined the data,
and decreased the correlation between the encoded signal and the original. That is, the
entries at the end of the low and high frequency components ` and h come from both the
beginning and end of the original signal f .

The goal of [4] was to show that there exist modifications of S and W which are orthogo-
nal and banded. Under some easily verified conditions the coefficients in these modifications
can also be used to construct multiresolution analyses over the interval [0, 2N ]. Regular-
ity of the resulting wavelet functions and their polynomial reproducing properties were
explored.

3. The Problem

We now discuss the biorthogonal analogue of the previous setup. Assume that we are
given two compactly supported scaling functions

φ =

2ns+1∑
k=0

skφ(2x− k),

φ̃ =

2ñs+1∑
k=0

s̃kφ̃(2x− k),

which are biorthogonal 〈
φ(x− k), φ̃(x− j)

〉
L2

= δjk
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and whose integer shifts form Riesz bases. Biorthogonality implies that their scaling coef-
ficients satisfy the biorthogonality conditions∑

k

sks̃k−2j =
∑
k

wkw̃k−2j = 2δ0j∑
k

skw̃k−2j =
∑
k

s̃kwk−2j = 0

for all j, k ∈ Z where wk = (−1)ks̃2n+1−k, w̃k = (−1)ks2n+1−k (here n = max (ns, ñs)). We
assume there are an even number of coefficients, setting the last equal to zero if necessary.

We can then produce the matrices (in the same manner as the orthogonal case) S S̃, W ,

and W̃ , and notice that the biorthogonality conditions imply that these matrices satisfy

SS̃∗ = WW̃ ∗ = 2I.

The first goal is to modify these matrices so that they still satisfy this equation, but are
also banded. We can then see in what ways the coefficients of the modifications can be
used to form (dual) multiresolution analyses, and discuss the regularity and approximation
properties of the resulting functions.

4. Results

We sketch here a basic solution to the problem in the last paragraph, in the case of n = 2
(6 scaling coefficients) for simplicity. (The proofs necessary for this case are sufficiently
general to demonstrate the result for any n.) The proof of the existence of modifications
in [4] (the orthogonal case) relies on the observation that (1) implies

Sa =

(
s0 s1 s2 s3
0 0 s0 s1

)
is orthogonal to

Sb =

(
s4 s5 0 0
s2 s3 s4 s5

)
.

Or in other terms,

(2) SaS
∗
b = SbS

∗
a = 0n,n.

For 2N = 10 the original orthogonal matrix S is

S =


s0 s1 s2 s3 s4 s5 0 0 0 0
0 0 s0 s1 s2 s3 s4 s5 0 0
0 0 0 0 s0 s1 s2 s3 s4 s5
s4 s5 0 0 0 0 s0 s1 s2 s3
s2 s3 s4 s5 0 0 0 0 s0 s1


and we notice that the problematic block in the bottom-left of S is Sb. Let M be a
modification of S,

M = SV,
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where V is defined so as to remove the Sb block. Explicitly, V is the 2N × 2N matrix

V =

(
(RaSa)∗ 0 (RbSb)

∗

0 I2N−2n,2N−2n 0

)
,

where

Ra = (SaS
∗
a)−1/2 Rb = (SbS

∗
b )−1/2.

It is evident that Ra and Rb are well-defined because of the linear independence of the
rows of Sa and Sb, and that (2) implies this is the correct choice for V .

Let N = WV be a banded (because of (2)) modification of the wavelet coefficient matrix.
The proof that the coefficients in the modified matrices M and N can be used to define
a collection of orthogonal scaling and wavelet functions is somewhat technical, but follows
from (1) and L2-convergence of the cascade algorithm, that is, fixed point iteration of the
functional equation

φ(x) =
∑
k

skφ(2x− k).

This L2 convergence is a result of Cohen’s condition, a well-known necessary condition
for scaling coefficients satisfying the hypotheses to produce an orthogonal scaling function.
(See [2] for details.)

The biorthogonal case can be treated in a similar manner. Defining φ and φ̃ as in section
3, we assume that ñs ≤ ns =: n, and that N > 2ns. In the case of n = 2 and 2N = 10 we

have the matrix S shown above. We also have S̃, with the same dimensions and structure

as S (though more of the entries in S̃ may be zero, because it is defined using the dual
coefficients {s̃k}). We also need to make use of the wavelet coefficients and matrices, W

and W̃ .
Recall that the biorthogonality conditions in section 3 tell us SS̃∗ = WW̃ ∗ = 2I, and

we wish to preserve this property in our banded modifications M , M̃ , N , and Ñ . This
time the key observation is that, using definitions analogous to the orthogonal case, the
biorthogonality conditions imply

SaS̃
∗
b = SbS̃

∗
a = S̃aS

∗
b = S̃bS

∗
a = 0,

SaW̃
∗
b = SbW̃

∗
a = S̃aW

∗
b = S̃bW

∗
a = 0.

We then define V so as to remove the S̃b block from the bottom-left corner of S̃, and Ṽ so
that it removes the Sb block from the bottom-left corner of S. We let

V =

(
(RaSa)∗ 0 (RbSb)

∗

0 I2N−2ns,2N−2ns 0

)

Ṽ =

(
W̃ ∗

a 0 W̃ ∗
b

0 I2N−2ns,2N−2ns 0

)
where Ra and Rb are defined so that V Ṽ ∗ = I. That is,

Ra = (SaW̃
∗
a )−1, Rb = (SbW̃

∗
b )−1.
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We can then define
M = SṼ , M̃ = S̃V

and confirm that these are banded and satisfy MM̃∗ = 2I. The same statements hold

for N = WṼ , Ñ = W̃V . The proof that primal and dual scaling and wavelet functions
are well-defined and biorthogonal using these modified coefficients is almost the same as
the orthogonal case, making use of the biorthogonality conditions and an L2-convergence
result for the cascade algorithm applied to biorthogonal scaling functions. This too is a
necessary condition for φ and φ̃ to be biorthogonal. It is effectively Cohen’s condition in
biorthogonal form, with details in [1].

5. Present and Future Work

One issue that has not yet been addressed is the domain of the biorthogonal transform

described above. For some scaling coefficients the matrix SaW̃
∗
a used to define Ra will

be singular. So far an example of this which also produces a Riesz basis, and is dual to
another scaling function has not been found, and it’s plausible that no such example exists
for technical reasons. Nevertheless many interesting and practical scaling coefficients are
in the domain of this transform so it is worth consideration.

Regardless of the domain of the transform above, it is of interest to generalize the method
of its construction. Non-square transforms can be produced that may give similar results
provided one is willing to do some pre or post-processing on the signal. Such transforms
could be constructed specifically to work with particular scaling sequences (for example,
scaling sequences for which the transform above fails).

In the future we hope to generalize this theory in the following ways:

• To allow for various extension techniques besides periodization.
• To find different techniques, or different proofs, for construction of fast finite trans-

forms based on scaling coefficients.
• To use these modifications to describe other function spaces (besides L2([0, 2N ]))

via MRA over compact domains.
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